Caveolae, Fenestrae and Transendothelial Channels Retain PV1 on the Surface of Endothelial Cells

نویسندگان

  • Eugene Tkachenko
  • Dan Tse
  • Olga Sideleva
  • Sophie J. Deharvengt
  • Marcus R. Luciano
  • Yan Xu
  • Caitlin L. McGarry
  • John Chidlow
  • Paul F. Pilch
  • William C. Sessa
  • Derek K. Toomre
  • Radu V. Stan
چکیده

PV1 protein is an essential component of stomatal and fenestral diaphragms, which are formed at the plasma membrane of endothelial cells (ECs), on structures such as caveolae, fenestrae and transendothelial channels. Knockout of PV1 in mice results in in utero and perinatal mortality. To be able to interpret the complex PV1 knockout phenotype, it is critical to determine whether the formation of diaphragms is the only cellular role of PV1. We addressed this question by measuring the effect of complete and partial removal of structures capable of forming diaphragms on PV1 protein level. Removal of caveolae in mice by knocking out caveolin-1 or cavin-1 resulted in a dramatic reduction of PV1 protein level in lungs but not kidneys. The magnitude of PV1 reduction correlated with the abundance of structures capable of forming diaphragms in the microvasculature of these organs. The absence of caveolae in the lung ECs did not affect the transcription or translation of PV1, but it caused a sharp increase in PV1 protein internalization rate via a clathrin- and dynamin-independent pathway followed by degradation in lysosomes. Thus, PV1 is retained on the cell surface of ECs by structures capable of forming diaphragms, but undergoes rapid internalization and degradation in the absence of these structures, suggesting that formation of diaphragms is the only role of PV1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PV1 is a key structural component for the formation of the stomatal and fenestral diaphragms.

PV1 is an endothelial-specific integral membrane glycoprotein associated with the stomatal diaphragms of caveolae, transendothelial channels, and vesiculo-vacuolar organelles and the diaphragms of endothelial fenestrae. Multiple PV1 homodimers are found within each stomatal and fenestral diaphragm. We investigated the function of PV1 within these diaphragms and their regulation and found that t...

متن کامل

Multiple PV1 dimers reside in the same stomatal or fenestral diaphragm.

Several of the endothelium-specific structures that have been involved in microvascular permeability [such as caveolae, transendothelial channels (TECs), vesiculovacuolar organelles (VVOs), and fenestrae] can be provided with either a stomatal or fenestral diaphragm. In the case of fenestrae, the diaphragm has the presumed function of creating a permselective barrier for solutes from blood plas...

متن کامل

Surface densities of diaphragmed fenestrae and transendothelial channels in different murine capillary beds.

Fenestrated capillaries are provided with two types of regular discontinuities: fenestrae with negatively charged diaphragms, and transendothelial channels fitted with two diaphragms, of which the luminal one is uncharged. These structures are expected to affect macromolecular exchanges on the basis of size and charge. We have detected variations in the surface density of fenestrations and tran...

متن کامل

Plasmalemma vesicle-associated protein: A crucial component of vascular homeostasis

Endothelial subcellular structures, including caveolae, fenestrae and transendothelial channels, are crucial for regulating microvascular function. Plasmalemma vesicle-associated protein (PLVAP) is an endothelial cell-specific protein that forms the stomatal and fenestral diaphragms of blood vessels and regulates basal permeability, leukocyte migration and angiogenesis. Loss of PLVAP in mice le...

متن کامل

Endothelial stomatal and fenestral diaphragms in normal vessels and angiogenesis

Vascular endothelium lines the entire cardiovascular system where performs a series of vital functions including the control of microvascular permeability, coagulation inflammation, vascular tone as well as the formation of new vessels via vasculogenesis and angiogenesis in normal and disease states. Normal endothelium consists of heterogeneous populations of cells differentiated according to t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012